Skip to content

vllm.lora.layers.fused_moe

FusedMoEWithLoRA

Bases: BaseLayerWithLoRA

Source code in vllm/lora/layers/fused_moe.py
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
class FusedMoEWithLoRA(BaseLayerWithLoRA):
    def __init__(self, base_layer: FusedMoE) -> None:
        super().__init__()
        self.base_layer = base_layer
        self.tp_size = get_tensor_model_parallel_world_size()
        self.tp_rank = get_tensor_model_parallel_rank()
        self.device = base_layer.w2_weight.device
        self._inject_lora_into_fused_moe()

    def _inject_lora_into_fused_moe(self):
        moe_state_dict = {}
        top_k = self.base_layer.top_k

        if self.base_layer.quant_config is None:
            quant_config = FUSED_MOE_UNQUANTIZED_CONFIG
        elif not isinstance(self.base_layer.quant_config, Mxfp4Config):
            quant_config = self.base_layer.quant_config
        else:
            quant_config = mxfp4_w4a16_moe_quant_config(
                w1_bias=self.base_layer.w13_bias,
                w2_bias=self.base_layer.w2_bias,
                w1_scale=self.base_layer.w13_weight_scale,
                w2_scale=self.base_layer.w2_weight_scale,
            )

        m_fused_moe_fn = (
            modular_triton_fused_moe(
                quant_config, shared_experts=self.base_layer.shared_experts
            )
            if not quant_config.use_mxfp4_w4a16
            else modular_marlin_fused_moe(
                quant_config, shared_experts=self.base_layer.shared_experts
            )
        )

        def fwd_decorator(layer, func):
            def wrapper(*args, **kwargs):
                moe_state_dict["hidden_states"] = kwargs["hidden_states"]
                moe_state_dict["topk_ids"] = kwargs["topk_ids"]
                moe_state_dict["topk_weights"] = kwargs["topk_weights"]
                moe_state_dict["global_num_experts"] = kwargs["global_num_experts"]
                moe_state_dict["expert_map"] = kwargs["expert_map"]
                moe_state_dict["apply_router_weight_on_input"] = kwargs[
                    "apply_router_weight_on_input"
                ]
                result = func(*args, **kwargs)
                return result

            return wrapper

        def act_decorator(layer, func):
            def wrapper(*args, **kwargs):
                _, output, input = args

                hidden_states = moe_state_dict["hidden_states"]
                topk_weights = moe_state_dict["topk_weights"]
                curr_topk_ids = moe_state_dict["topk_ids"]
                global_num_experts = moe_state_dict["global_num_experts"]
                expert_map = moe_state_dict["expert_map"]

                config_dtype = _get_config_dtype_str(
                    dtype=hidden_states.dtype,
                    use_fp8_w8a8=False,
                    use_int8_w8a16=False,
                    use_int4_w4a16=False,
                )
                CHUNK_SIZE = envs.VLLM_FUSED_MOE_CHUNK_SIZE
                num_tokens = hidden_states.size(0)
                M = min(num_tokens, CHUNK_SIZE)

                get_config_func = functools.partial(
                    try_get_optimal_moe_config,
                    layer.w13_weight.size(),
                    layer.w2_weight.size(),
                    top_k,
                    config_dtype,
                    block_shape=layer.quant_method.moe_quant_config.block_shape,
                )

                (_, _, num_tokens_per_lora, _, _, _) = (
                    self.punica_wrapper.token_mapping_meta.meta_args(
                        hidden_states.size(0)
                    )
                )
                max_loras = self.w1_lora_a_stacked.shape[0]
                config = get_config_func(M)
                (
                    sorted_token_ids_lora,
                    expert_ids_lora,
                    num_tokens_post_padded_lora,
                ) = self.punica_wrapper.moe_lora_align_block_size(
                    curr_topk_ids,
                    num_tokens,
                    config["BLOCK_SIZE_M"],
                    global_num_experts,
                    max_loras,
                    num_tokens_per_lora,
                    self.adapter_enabled,
                    expert_map,
                )

                moe_state_dict["sorted_token_ids_lora"] = sorted_token_ids_lora
                moe_state_dict["expert_ids_lora"] = expert_ids_lora
                moe_state_dict["num_tokens_post_padded_lora"] = (
                    num_tokens_post_padded_lora
                )

                w13_lora_a_stacked = [self.w1_lora_a_stacked, self.w3_lora_a_stacked]
                w13_lora_b_stacked = [self.w1_lora_b_stacked, self.w3_lora_b_stacked]
                max_lora_rank = self.w1_lora_a_stacked.shape[-2]
                expert_ids_lora = expert_ids_lora.view(max_loras, -1)
                sorted_token_ids_lora = sorted_token_ids_lora.view(max_loras, -1)

                self.punica_wrapper.add_lora_fused_moe(
                    input.view(-1, top_k, input.shape[-1]),
                    hidden_states,
                    w13_lora_a_stacked,
                    w13_lora_b_stacked,
                    topk_weights,
                    sorted_token_ids_lora,
                    expert_ids_lora,
                    num_tokens_post_padded_lora,
                    max_lora_rank,
                    top_k,
                    config,
                    self.adapter_enabled,
                )

                result = func(*args, **kwargs)

                moe_state_dict["intermediate_cache2"] = output
                return result

            return wrapper

        def moe_sum_decorator(layer, func):
            def wrapper(*args, **kwargs):
                hidden_states = moe_state_dict["hidden_states"]
                topk_weights = moe_state_dict["topk_weights"]

                config_dtype = _get_config_dtype_str(
                    dtype=hidden_states.dtype,
                    use_fp8_w8a8=False,
                    use_int8_w8a16=False,
                    use_int4_w4a16=False,
                )
                CHUNK_SIZE = envs.VLLM_FUSED_MOE_CHUNK_SIZE
                num_tokens = hidden_states.size(0)
                M = min(num_tokens, CHUNK_SIZE)

                get_config_func = functools.partial(
                    try_get_optimal_moe_config,
                    layer.w13_weight.size(),
                    layer.w2_weight.size(),
                    top_k,
                    config_dtype,
                    block_shape=layer.quant_method.moe_quant_config.block_shape,
                )

                config = get_config_func(M)

                sorted_token_ids_lora = moe_state_dict["sorted_token_ids_lora"]
                expert_ids_lora = moe_state_dict["expert_ids_lora"]
                num_tokens_post_padded_lora = moe_state_dict[
                    "num_tokens_post_padded_lora"
                ]
                max_loras = self.w1_lora_a_stacked.shape[0]
                expert_ids_lora = expert_ids_lora.view(max_loras, -1)
                sorted_token_ids_lora = sorted_token_ids_lora.view(max_loras, -1)
                intermediate_cache2 = moe_state_dict["intermediate_cache2"]
                intermediate_cache3 = args[0]
                max_lora_rank = self.w1_lora_a_stacked.shape[-2]
                self.punica_wrapper.add_lora_fused_moe(
                    intermediate_cache3,
                    intermediate_cache2,
                    [self.w2_lora_a_stacked],
                    [self.w2_lora_b_stacked],
                    topk_weights,
                    sorted_token_ids_lora,
                    expert_ids_lora,
                    num_tokens_post_padded_lora,
                    max_lora_rank,
                    top_k,
                    config,
                    self.adapter_enabled,
                    True,
                )

                result = func(*args, **kwargs)
                return result

            return wrapper

        fused_experts = m_fused_moe_fn.fused_experts

        m_fused_moe_fn.forward = fwd_decorator(self.base_layer, m_fused_moe_fn.forward)
        fused_experts.activation = act_decorator(
            self.base_layer, fused_experts.activation
        )
        fused_experts.moe_sum = moe_sum_decorator(
            self.base_layer, fused_experts.moe_sum
        )

        self.base_layer.quant_method.old_fused_experts = (
            self.base_layer.quant_method.fused_experts
        )
        self.base_layer.quant_method.fused_experts = m_fused_moe_fn

    def create_lora_weights(
        self,
        max_loras: int,
        lora_config: LoRAConfig,
        model_config: PretrainedConfig | None = None,
    ) -> None:
        """Initializes lora matrices."""

        assert not self.base_layer.use_ep, (
            "EP support for Fused MoE LoRA is not implemented yet."
        )
        self.adapter_enabled = torch.tensor(
            [0] * (max_loras + 1), dtype=torch.int, device=self.device
        )

        self.w1_lora_a_stacked = torch.zeros(
            (
                max_loras,
                self.base_layer.global_num_experts,
                lora_config.max_lora_rank,
                self.base_layer.hidden_size,
            ),
            dtype=lora_config.lora_dtype,
            device=self.device,
        )
        self.w1_lora_b_stacked = torch.zeros(
            (
                max_loras,
                self.base_layer.global_num_experts,
                self.base_layer.intermediate_size_per_partition,
                lora_config.max_lora_rank,
            ),
            dtype=lora_config.lora_dtype,
            device=self.device,
        )

        self.w2_lora_a_stacked = torch.zeros(
            (
                max_loras,
                self.base_layer.global_num_experts,
                lora_config.max_lora_rank,
                self.base_layer.intermediate_size_per_partition,
            ),
            dtype=lora_config.lora_dtype,
            device=self.device,
        )
        self.w2_lora_b_stacked = torch.zeros(
            (
                max_loras,
                self.base_layer.global_num_experts,
                self.base_layer.hidden_size,
                lora_config.max_lora_rank,
            ),
            dtype=lora_config.lora_dtype,
            device=self.device,
        )

        self.w3_lora_a_stacked = torch.zeros(
            (
                max_loras,
                self.base_layer.global_num_experts,
                lora_config.max_lora_rank,
                self.base_layer.hidden_size,
            ),
            dtype=lora_config.lora_dtype,
            device=self.device,
        )
        self.w3_lora_b_stacked = torch.zeros(
            (
                max_loras,
                self.base_layer.global_num_experts,
                self.base_layer.intermediate_size_per_partition,
                lora_config.max_lora_rank,
            ),
            dtype=lora_config.lora_dtype,
            device=self.device,
        )

        # They will be used by 'LoRALayerWeights.create_dummy_lora_weights'
        # to create a dummy LoRA weights.
        self.lora_a_stacked = []
        self.lora_b_stacked = []
        for lora_id in range(max_loras):
            for experts_id in range(self.base_layer.global_num_experts):
                # gate_proj,down_proj,up_proj
                self.lora_a_stacked.append(self.w1_lora_a_stacked[lora_id][experts_id])
                self.lora_a_stacked.append(self.w2_lora_a_stacked[lora_id][experts_id])
                self.lora_a_stacked.append(self.w3_lora_a_stacked[lora_id][experts_id])

                self.lora_b_stacked.append(self.w1_lora_b_stacked[lora_id][experts_id])
                self.lora_b_stacked.append(self.w2_lora_b_stacked[lora_id][experts_id])
                self.lora_b_stacked.append(self.w3_lora_b_stacked[lora_id][experts_id])

    def reset_lora(self, index: int):
        """Resets the lora weights at index back to 0."""
        self.w1_lora_a_stacked[index] = 0
        self.w1_lora_b_stacked[index] = 0
        self.w3_lora_a_stacked[index] = 0
        self.w3_lora_b_stacked[index] = 0
        self.w2_lora_a_stacked[index] = 0
        self.w2_lora_b_stacked[index] = 0
        self.adapter_enabled[index] = 0

    def set_lora(
        self,
        index: int,
        lora_a: torch.Tensor,
        lora_b: torch.Tensor,
        embeddings_tensor: torch.Tensor | None,
        bias: torch.Tensor | None = None,
    ):
        """Overwrites lora tensors at index."""
        self.reset_lora(index)
        self.adapter_enabled[index] = 1
        for eid in range(len(lora_a) // 3):
            w1_lora_a = lora_a[eid * 3]
            w2_lora_a = lora_a[eid * 3 + 1]
            w3_lora_a = lora_a[eid * 3 + 2]
            w1_lora_b = lora_b[eid * 3]
            w2_lora_b = lora_b[eid * 3 + 1]
            w3_lora_b = lora_b[eid * 3 + 2]

            # Handle the case of adding LoRA to only a subset of experts
            if w1_lora_a is None or w2_lora_a is None or w3_lora_a is None:
                continue

            if self.tp_size > 1:
                shard_size = self.base_layer.intermediate_size_per_partition
                start_idx = self.tp_rank * shard_size
                end_idx = (self.tp_rank + 1) * shard_size

                w1_lora_b = w1_lora_b[start_idx:end_idx, :]
                w3_lora_b = w3_lora_b[start_idx:end_idx, :]
                w2_lora_a = w2_lora_a[:, start_idx:end_idx]

            self.w1_lora_a_stacked[
                index, eid, : w1_lora_a.shape[0], : w1_lora_a.shape[1]
            ].copy_(w1_lora_a, non_blocking=True)

            self.w3_lora_a_stacked[
                index, eid, : w3_lora_a.shape[0], : w3_lora_a.shape[1]
            ].copy_(w3_lora_a, non_blocking=True)

            self.w2_lora_b_stacked[
                index, eid, : w2_lora_b.shape[0], : w2_lora_b.shape[1]
            ].copy_(w2_lora_b, non_blocking=True)

            self.w1_lora_b_stacked[
                index, eid, : w1_lora_b.shape[0], : w1_lora_b.shape[1]
            ].copy_(w1_lora_b, non_blocking=True)
            self.w3_lora_b_stacked[
                index, eid, : w3_lora_b.shape[0], : w3_lora_b.shape[1]
            ].copy_(w3_lora_b, non_blocking=True)
            self.w2_lora_a_stacked[
                index, eid, : w2_lora_a.shape[0], : w2_lora_a.shape[1]
            ].copy_(w2_lora_a, non_blocking=True)

    @classmethod
    def can_replace_layer(
        cls,
        source_layer: nn.Module,
        lora_config: LoRAConfig,
        packed_modules_list: list,
        model_config: PretrainedConfig | None,
    ) -> bool:
        """Returns True if the layer can be replaced by this LoRA layer."""
        # return type(source_layer) is FusedMoE
        return isinstance(source_layer, FusedMoE)

    def forward(self, *args, **kwargs):
        return self.base_layer.forward(*args, **kwargs)

    def maybe_all_reduce_tensor_model_parallel(self, *args, **kwargs):
        return self.base_layer.maybe_all_reduce_tensor_model_parallel(*args, **kwargs)

    @property
    def _shared_experts(self):
        return self.base_layer._shared_experts

    @property
    def quant_method(self):
        return self.base_layer.quant_method

    @property
    def is_internal_router(self) -> bool:
        return self.base_layer.is_internal_router

_shared_experts property

_shared_experts

base_layer instance-attribute

base_layer = base_layer

device instance-attribute

device = device

is_internal_router property

is_internal_router: bool

quant_method property

quant_method

tp_rank instance-attribute

tp_size instance-attribute

__init__

__init__(base_layer: FusedMoE) -> None
Source code in vllm/lora/layers/fused_moe.py
def __init__(self, base_layer: FusedMoE) -> None:
    super().__init__()
    self.base_layer = base_layer
    self.tp_size = get_tensor_model_parallel_world_size()
    self.tp_rank = get_tensor_model_parallel_rank()
    self.device = base_layer.w2_weight.device
    self._inject_lora_into_fused_moe()

_inject_lora_into_fused_moe

_inject_lora_into_fused_moe()
Source code in vllm/lora/layers/fused_moe.py
def _inject_lora_into_fused_moe(self):
    moe_state_dict = {}
    top_k = self.base_layer.top_k

    if self.base_layer.quant_config is None:
        quant_config = FUSED_MOE_UNQUANTIZED_CONFIG
    elif not isinstance(self.base_layer.quant_config, Mxfp4Config):
        quant_config = self.base_layer.quant_config
    else:
        quant_config = mxfp4_w4a16_moe_quant_config(
            w1_bias=self.base_layer.w13_bias,
            w2_bias=self.base_layer.w2_bias,
            w1_scale=self.base_layer.w13_weight_scale,
            w2_scale=self.base_layer.w2_weight_scale,
        )

    m_fused_moe_fn = (
        modular_triton_fused_moe(
            quant_config, shared_experts=self.base_layer.shared_experts
        )
        if not quant_config.use_mxfp4_w4a16
        else modular_marlin_fused_moe(
            quant_config, shared_experts=self.base_layer.shared_experts
        )
    )

    def fwd_decorator(layer, func):
        def wrapper(*args, **kwargs):
            moe_state_dict["hidden_states"] = kwargs["hidden_states"]
            moe_state_dict["topk_ids"] = kwargs["topk_ids"]
            moe_state_dict["topk_weights"] = kwargs["topk_weights"]
            moe_state_dict["global_num_experts"] = kwargs["global_num_experts"]
            moe_state_dict["expert_map"] = kwargs["expert_map"]
            moe_state_dict["apply_router_weight_on_input"] = kwargs[
                "apply_router_weight_on_input"
            ]
            result = func(*args, **kwargs)
            return result

        return wrapper

    def act_decorator(layer, func):
        def wrapper(*args, **kwargs):
            _, output, input = args

            hidden_states = moe_state_dict["hidden_states"]
            topk_weights = moe_state_dict["topk_weights"]
            curr_topk_ids = moe_state_dict["topk_ids"]
            global_num_experts = moe_state_dict["global_num_experts"]
            expert_map = moe_state_dict["expert_map"]

            config_dtype = _get_config_dtype_str(
                dtype=hidden_states.dtype,
                use_fp8_w8a8=False,
                use_int8_w8a16=False,
                use_int4_w4a16=False,
            )
            CHUNK_SIZE = envs.VLLM_FUSED_MOE_CHUNK_SIZE
            num_tokens = hidden_states.size(0)
            M = min(num_tokens, CHUNK_SIZE)

            get_config_func = functools.partial(
                try_get_optimal_moe_config,
                layer.w13_weight.size(),
                layer.w2_weight.size(),
                top_k,
                config_dtype,
                block_shape=layer.quant_method.moe_quant_config.block_shape,
            )

            (_, _, num_tokens_per_lora, _, _, _) = (
                self.punica_wrapper.token_mapping_meta.meta_args(
                    hidden_states.size(0)
                )
            )
            max_loras = self.w1_lora_a_stacked.shape[0]
            config = get_config_func(M)
            (
                sorted_token_ids_lora,
                expert_ids_lora,
                num_tokens_post_padded_lora,
            ) = self.punica_wrapper.moe_lora_align_block_size(
                curr_topk_ids,
                num_tokens,
                config["BLOCK_SIZE_M"],
                global_num_experts,
                max_loras,
                num_tokens_per_lora,
                self.adapter_enabled,
                expert_map,
            )

            moe_state_dict["sorted_token_ids_lora"] = sorted_token_ids_lora
            moe_state_dict["expert_ids_lora"] = expert_ids_lora
            moe_state_dict["num_tokens_post_padded_lora"] = (
                num_tokens_post_padded_lora
            )

            w13_lora_a_stacked = [self.w1_lora_a_stacked, self.w3_lora_a_stacked]
            w13_lora_b_stacked = [self.w1_lora_b_stacked, self.w3_lora_b_stacked]
            max_lora_rank = self.w1_lora_a_stacked.shape[-2]
            expert_ids_lora = expert_ids_lora.view(max_loras, -1)
            sorted_token_ids_lora = sorted_token_ids_lora.view(max_loras, -1)

            self.punica_wrapper.add_lora_fused_moe(
                input.view(-1, top_k, input.shape[-1]),
                hidden_states,
                w13_lora_a_stacked,
                w13_lora_b_stacked,
                topk_weights,
                sorted_token_ids_lora,
                expert_ids_lora,
                num_tokens_post_padded_lora,
                max_lora_rank,
                top_k,
                config,
                self.adapter_enabled,
            )

            result = func(*args, **kwargs)

            moe_state_dict["intermediate_cache2"] = output
            return result

        return wrapper

    def moe_sum_decorator(layer, func):
        def wrapper(*args, **kwargs):
            hidden_states = moe_state_dict["hidden_states"]
            topk_weights = moe_state_dict["topk_weights"]

            config_dtype = _get_config_dtype_str(
                dtype=hidden_states.dtype,
                use_fp8_w8a8=False,
                use_int8_w8a16=False,
                use_int4_w4a16=False,
            )
            CHUNK_SIZE = envs.VLLM_FUSED_MOE_CHUNK_SIZE
            num_tokens = hidden_states.size(0)
            M = min(num_tokens, CHUNK_SIZE)

            get_config_func = functools.partial(
                try_get_optimal_moe_config,
                layer.w13_weight.size(),
                layer.w2_weight.size(),
                top_k,
                config_dtype,
                block_shape=layer.quant_method.moe_quant_config.block_shape,
            )

            config = get_config_func(M)

            sorted_token_ids_lora = moe_state_dict["sorted_token_ids_lora"]
            expert_ids_lora = moe_state_dict["expert_ids_lora"]
            num_tokens_post_padded_lora = moe_state_dict[
                "num_tokens_post_padded_lora"
            ]
            max_loras = self.w1_lora_a_stacked.shape[0]
            expert_ids_lora = expert_ids_lora.view(max_loras, -1)
            sorted_token_ids_lora = sorted_token_ids_lora.view(max_loras, -1)
            intermediate_cache2 = moe_state_dict["intermediate_cache2"]
            intermediate_cache3 = args[0]
            max_lora_rank = self.w1_lora_a_stacked.shape[-2]
            self.punica_wrapper.add_lora_fused_moe(
                intermediate_cache3,
                intermediate_cache2,
                [self.w2_lora_a_stacked],
                [self.w2_lora_b_stacked],
                topk_weights,
                sorted_token_ids_lora,
                expert_ids_lora,
                num_tokens_post_padded_lora,
                max_lora_rank,
                top_k,
                config,
                self.adapter_enabled,
                True,
            )

            result = func(*args, **kwargs)
            return result

        return wrapper

    fused_experts = m_fused_moe_fn.fused_experts

    m_fused_moe_fn.forward = fwd_decorator(self.base_layer, m_fused_moe_fn.forward)
    fused_experts.activation = act_decorator(
        self.base_layer, fused_experts.activation
    )
    fused_experts.moe_sum = moe_sum_decorator(
        self.base_layer, fused_experts.moe_sum
    )

    self.base_layer.quant_method.old_fused_experts = (
        self.base_layer.quant_method.fused_experts
    )
    self.base_layer.quant_method.fused_experts = m_fused_moe_fn

can_replace_layer classmethod

can_replace_layer(
    source_layer: Module,
    lora_config: LoRAConfig,
    packed_modules_list: list,
    model_config: PretrainedConfig | None,
) -> bool

Returns True if the layer can be replaced by this LoRA layer.

Source code in vllm/lora/layers/fused_moe.py
@classmethod
def can_replace_layer(
    cls,
    source_layer: nn.Module,
    lora_config: LoRAConfig,
    packed_modules_list: list,
    model_config: PretrainedConfig | None,
) -> bool:
    """Returns True if the layer can be replaced by this LoRA layer."""
    # return type(source_layer) is FusedMoE
    return isinstance(source_layer, FusedMoE)

create_lora_weights

create_lora_weights(
    max_loras: int,
    lora_config: LoRAConfig,
    model_config: PretrainedConfig | None = None,
) -> None

Initializes lora matrices.

Source code in vllm/lora/layers/fused_moe.py
def create_lora_weights(
    self,
    max_loras: int,
    lora_config: LoRAConfig,
    model_config: PretrainedConfig | None = None,
) -> None:
    """Initializes lora matrices."""

    assert not self.base_layer.use_ep, (
        "EP support for Fused MoE LoRA is not implemented yet."
    )
    self.adapter_enabled = torch.tensor(
        [0] * (max_loras + 1), dtype=torch.int, device=self.device
    )

    self.w1_lora_a_stacked = torch.zeros(
        (
            max_loras,
            self.base_layer.global_num_experts,
            lora_config.max_lora_rank,
            self.base_layer.hidden_size,
        ),
        dtype=lora_config.lora_dtype,
        device=self.device,
    )
    self.w1_lora_b_stacked = torch.zeros(
        (
            max_loras,
            self.base_layer.global_num_experts,
            self.base_layer.intermediate_size_per_partition,
            lora_config.max_lora_rank,
        ),
        dtype=lora_config.lora_dtype,
        device=self.device,
    )

    self.w2_lora_a_stacked = torch.zeros(
        (
            max_loras,
            self.base_layer.global_num_experts,
            lora_config.max_lora_rank,
            self.base_layer.intermediate_size_per_partition,
        ),
        dtype=lora_config.lora_dtype,
        device=self.device,
    )
    self.w2_lora_b_stacked = torch.zeros(
        (
            max_loras,
            self.base_layer.global_num_experts,
            self.base_layer.hidden_size,
            lora_config.max_lora_rank,
        ),
        dtype=lora_config.lora_dtype,
        device=self.device,
    )

    self.w3_lora_a_stacked = torch.zeros(
        (
            max_loras,
            self.base_layer.global_num_experts,
            lora_config.max_lora_rank,
            self.base_layer.hidden_size,
        ),
        dtype=lora_config.lora_dtype,
        device=self.device,
    )
    self.w3_lora_b_stacked = torch.zeros(
        (
            max_loras,
            self.base_layer.global_num_experts,
            self.base_layer.intermediate_size_per_partition,
            lora_config.max_lora_rank,
        ),
        dtype=lora_config.lora_dtype,
        device=self.device,
    )

    # They will be used by 'LoRALayerWeights.create_dummy_lora_weights'
    # to create a dummy LoRA weights.
    self.lora_a_stacked = []
    self.lora_b_stacked = []
    for lora_id in range(max_loras):
        for experts_id in range(self.base_layer.global_num_experts):
            # gate_proj,down_proj,up_proj
            self.lora_a_stacked.append(self.w1_lora_a_stacked[lora_id][experts_id])
            self.lora_a_stacked.append(self.w2_lora_a_stacked[lora_id][experts_id])
            self.lora_a_stacked.append(self.w3_lora_a_stacked[lora_id][experts_id])

            self.lora_b_stacked.append(self.w1_lora_b_stacked[lora_id][experts_id])
            self.lora_b_stacked.append(self.w2_lora_b_stacked[lora_id][experts_id])
            self.lora_b_stacked.append(self.w3_lora_b_stacked[lora_id][experts_id])

forward

forward(*args, **kwargs)
Source code in vllm/lora/layers/fused_moe.py
def forward(self, *args, **kwargs):
    return self.base_layer.forward(*args, **kwargs)

maybe_all_reduce_tensor_model_parallel

maybe_all_reduce_tensor_model_parallel(*args, **kwargs)
Source code in vllm/lora/layers/fused_moe.py
def maybe_all_reduce_tensor_model_parallel(self, *args, **kwargs):
    return self.base_layer.maybe_all_reduce_tensor_model_parallel(*args, **kwargs)

reset_lora

reset_lora(index: int)

Resets the lora weights at index back to 0.

Source code in vllm/lora/layers/fused_moe.py
def reset_lora(self, index: int):
    """Resets the lora weights at index back to 0."""
    self.w1_lora_a_stacked[index] = 0
    self.w1_lora_b_stacked[index] = 0
    self.w3_lora_a_stacked[index] = 0
    self.w3_lora_b_stacked[index] = 0
    self.w2_lora_a_stacked[index] = 0
    self.w2_lora_b_stacked[index] = 0
    self.adapter_enabled[index] = 0

set_lora

set_lora(
    index: int,
    lora_a: Tensor,
    lora_b: Tensor,
    embeddings_tensor: Tensor | None,
    bias: Tensor | None = None,
)

Overwrites lora tensors at index.

Source code in vllm/lora/layers/fused_moe.py
def set_lora(
    self,
    index: int,
    lora_a: torch.Tensor,
    lora_b: torch.Tensor,
    embeddings_tensor: torch.Tensor | None,
    bias: torch.Tensor | None = None,
):
    """Overwrites lora tensors at index."""
    self.reset_lora(index)
    self.adapter_enabled[index] = 1
    for eid in range(len(lora_a) // 3):
        w1_lora_a = lora_a[eid * 3]
        w2_lora_a = lora_a[eid * 3 + 1]
        w3_lora_a = lora_a[eid * 3 + 2]
        w1_lora_b = lora_b[eid * 3]
        w2_lora_b = lora_b[eid * 3 + 1]
        w3_lora_b = lora_b[eid * 3 + 2]

        # Handle the case of adding LoRA to only a subset of experts
        if w1_lora_a is None or w2_lora_a is None or w3_lora_a is None:
            continue

        if self.tp_size > 1:
            shard_size = self.base_layer.intermediate_size_per_partition
            start_idx = self.tp_rank * shard_size
            end_idx = (self.tp_rank + 1) * shard_size

            w1_lora_b = w1_lora_b[start_idx:end_idx, :]
            w3_lora_b = w3_lora_b[start_idx:end_idx, :]
            w2_lora_a = w2_lora_a[:, start_idx:end_idx]

        self.w1_lora_a_stacked[
            index, eid, : w1_lora_a.shape[0], : w1_lora_a.shape[1]
        ].copy_(w1_lora_a, non_blocking=True)

        self.w3_lora_a_stacked[
            index, eid, : w3_lora_a.shape[0], : w3_lora_a.shape[1]
        ].copy_(w3_lora_a, non_blocking=True)

        self.w2_lora_b_stacked[
            index, eid, : w2_lora_b.shape[0], : w2_lora_b.shape[1]
        ].copy_(w2_lora_b, non_blocking=True)

        self.w1_lora_b_stacked[
            index, eid, : w1_lora_b.shape[0], : w1_lora_b.shape[1]
        ].copy_(w1_lora_b, non_blocking=True)
        self.w3_lora_b_stacked[
            index, eid, : w3_lora_b.shape[0], : w3_lora_b.shape[1]
        ].copy_(w3_lora_b, non_blocking=True)
        self.w2_lora_a_stacked[
            index, eid, : w2_lora_a.shape[0], : w2_lora_a.shape[1]
        ].copy_(w2_lora_a, non_blocking=True)